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1 Introduction

Since the birth of the neural network model

as a model of the brain, a lot of features sim-

ilar to brain's behaviors were found in this

arti�cial model[1]. Despite of such intensive

studies, we have not yet come to a satisfac-

tory understanding of the complexity of the

brain.

In this paper, we suggest a new approach

for understanding the human brain. We took

psychological data of the human memory as

quantitative characterization of the perfor-

mance of the living brain. Speci�cally, we

show in this paper that both the neural net-

work model and the human brain are sub-

ject to the same power law when they memo-

rize something. This quantitative correspon-
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dences will deepen our understanding of the

brain.

In the next section we examine the power

law in the human memory. In section 3 we

examine the power law in the neural network

model. The last section is devoted to some

discussions.

2 Power law in the hu-

man memory

Now imagine the situation that you are mem-

orizing some objects. You surely experience

that as the number of objects increases, your

pace of memory declines. This phenomena

is believed to be caused by the interference

among di�erent objects to be memorized.

M.Foucault expressed this fact quantita-

tively as follows[2]:

t(M) = cM

D

with D = 2, where M denotes the number of

objects to memorize, t is the learning time,
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which is necessary to complete memory and

c is a constant. Various exponents D were

proposed by several researchers, but most of

their estimations agreed with 1 < D < 2.

Since these psychological experiments

stated above are very old (they were taken

in the early times of this century), we tested

some people in our university to con�rm the

power law by ourselves. The way of our ex-

periment is as follows. We let the subject

memorize a sequence of random numbers and

check how many numbers he/she has memo-

rized every 30 seconds.

The results is shown in t versus M plot

with log axis (Fig.1). We carried out the �
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test to check the validity of the power law.

The result of the test shows that the power

law is supported with relatively high signi�-

cance level. For almost a half of our subjects

its values are more than 80 percent. Despite

the fact that our experiment is not under a

strict control like the experiment which psy-

chologist does, it is fairly a nice �t. Thus we

think it is reasonable to accept the power law

to be true from these facts.

3 Power law in the neural

network model

In this section we discuss the problem

whether the neural network model has the

power law observed in the performance of the

human brain. We perform the simulation us-

ing a back propagation network (BPN) with

a single hidden layer[1].

We make our BPN learnM objects which

we call patterns. Then we record the number

of iterations spent in convergence, which we

call learning time t. Our purpose here is to

examine the relation between the number of

patterns and the learning time.

As is well known, however, the learning

time t is sharply dependent on the initial

value on the connection weights. Displayed

in Fig.2 is a histogram of the typical distri-

bution of the learning time. They show the

following features: (1) the existence of mini-

mal time, (2) beyond the minimum its curve

sharply peaks.

In this situation, we face a problem which

we shall call the learning time.

To avoid this problem we propose a model

of the following memory system. Let us sup-

pose that the large system composed of n

BPNs and one central neuron. Each BPN

is connected to the central neuron and has

a di�erent initial condition of its connection

weights. Suppose that these BPNs start their

learning at the same time and �nish it sequen-

tially. At the completion of learning, we sup-

pose, they send signals to the central neuron.

Conversely, the central neuron receives those

signals. If the bias of central neuron is set to

an appropriate value, it sparks when the sig-

nals pile up enough to go over the bias. Hence

we can naturally de�ne the learning time as

the moment when the central neuron sparks.

Here we set the bias of central neuron so

that it sparks when the signals from 20 per-

cent of total sub-networks are received. There

is no importance to specify this value, since

we can show that any other de�nitions such

as 30 percent lead to essentially the same re-

sult. Hence we take the setting above in this

paper.

Taking the average value of the distribu-

tion as a de�nition of the learning time is an-

other simpler de�nition. However, the aver-

age is calculated using the data which come

from faster paced systems to slower ones. It

seems physiologically unnatural to take ac-

count of much longer time after the true

learning time. Thus we adopt the former def-

inition conceptually. But it is again shown

that the latter de�nition leads to essentially

the same plot. Because of the technical rea-

son we present here the plots based on the

latter de�nition in Fig.3.

Those graphs show that the plots are �t-

ted with the line in high accuracy. That is,

the power law relation surely holds in this

model. In our simulation the exponents D

are distributed around the value of 2.
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4 Discussions

As we have discussed in the previous section,

the power law is observed in our model. We

believe that it is valuable to obtain such a re-

sult from the BPN, one of the most standard

learning algorithms. Moreover, the fact that

our model has the same feature to the perfor-

mance of the human brain might be a hint to

the secret of the system of human memory.

Finally we point out two interesting top-

ics.

By identifying the power laws in human

beings and the BP, we can determine the cor-

respondence between the time in the human

case and the BP case. Then we �nd that one

iteration corresponds to 0:01 � 0:1 second

(note that it does not mean CPU-time). This

means that 10 � 100 learning processes are

run in one second. From the physiological re-

straint of the neuron a brain can execute the

task at most 100 steps in a second. If the

one learning iteration corresponds to 1 step

of program in the brain of human being, our

estimation is consistent with the physiological

fact[3].

The second is on the form of curve in bilog

plot graph. We notice that there is a cer-

tain vibrating mode around the line in the

curve,which is not merely a statistical 
uctu-

ation. This may be a key to understand the

detailed structure of the learning dynamics of

the model.
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